Spatial and developmental differentiation of mannitol dehydrogenase and mannitol-1-phosphate dehydrogenase in Aspergillus niger.

نویسندگان

  • Guillermo Aguilar-Osorio
  • Patricia A Vankuyk
  • Bernhard Seiboth
  • Dirk Blom
  • Peter S Solomon
  • Arman Vinck
  • Frits Kindt
  • Han A B Wösten
  • Ronald P de Vries
چکیده

The presence of a mannitol cycle in fungi has been subject to discussion for many years. Recent studies have found no evidence for the presence of this cycle and its putative role in regenerating NADPH. However, all enzymes of the cycle could be measured in cultures of Aspergillus niger. In this study we have analyzed the localization of two enzymes from the pathway, mannitol dehydrogenase and mannitol-1-phosphate dehydrogenase, and the expression of their encoding genes in nonsporulating and sporulating cultures of A. niger. Northern analysis demonstrated that mpdA was expressed in both sporulating and nonsporulating mycelia, while expression of mtdA was expressed only in sporulating mycelium. More detailed studies using green fluorescent protein and dTomato fused to the promoters of mtdA and mpdA, respectively, demonstrated that expression of mpdA occurs in vegetative hyphae while mtdA expression occurs in conidiospores. Activity assays for MtdA and MpdA confirmed the expression data, indicating that streaming of these proteins is not likely to occur. These results confirm the absence of the putative mannitol cycle in A. niger as two of the enzymes of the cycle are not present in the same part of A. niger colonies. The results also demonstrate the existence of spore-specific genes and enzymes in A. niger.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mannitol is required for stress tolerance in Aspergillus niger conidiospores.

D-Mannitol is the predominant carbon compound in conidiospores of the filamentous fungus Aspergillus niger and makes up 10 to 15% of the dry weight. A number of physiological functions have been ascribed to mannitol, including serving as a reserve carbon source, as an antioxidant, and to store reducing power. In this study, we cloned and characterized the A. niger mpdA gene, which encodes manni...

متن کامل

D-mannitol metabolism by Aspergillus candidus.

Pathways of mannitol biosynthesis and utilization in Aspergillus candidus NRRL 305 were studied in cell-free extracts of washed mycelia prepared by sonic and French pressure cell treatments. A nicotinamide adenine dinucleotide-linked mannitol-1-phosphate (M1P) dehydrogenase was found in French pressure cell extracts of d-glucose-grown cells, whereas a specific mannitol-1-phosphatase was present...

متن کامل

Purification and characterization of mannitol dehydrogenase from Aspergillus parasiticus.

Mannitol dehydrogenase, NADP specific (EC 1.1.1.138), was purified from mycelium of Aspergillus parasiticus (1-11-105 Whl). The enzyme had a molecular weight of 1.4 X 10(5) and was composed of four subunits of apparently equal size. The substrate specificity was limited to D-mannitol, D-glucitol, D-arabinitol, 1-deoxy-D-mannitol, and 1-deoxy-D-glucitol. Zinc ion was a powerful inhibitor of the ...

متن کامل

Mannitol oxidation in two Micromonospora isolates and in representative species of other actinomycetes.

Mannitol kinase and mannitol-1-phosphate dehydrogenase activities were detected in two Micromonospora isolates. The presence of these enzyme activities indicates that mannitol is catabolized first to mannitol-1-phosphate and then to fructose-6-phosphate. Mannitol-oxidizing enzymes were also surveyed in representative species of four other genera of actinomycetes. Mannitol-1-phosphate dehydrogen...

متن کامل

Cloning and characterization of NADP-mannitol dehydrogenase cDNA from the button mushroom, Agaricus bisporus, and its expression in response to NaCl stress.

Mannitol, a six-carbon sugar alcohol, is the main storage carbon in the button mushroom, Agaricus bisporus. Given the physiological importance of mannitol metabolism in growth, fruit body development, and salt tolerance of A. bisporus, the enzyme responsible for mannitol biosynthesis, NADP-dependent mannitol dehydrogenase (MtDH) (EC 1.1.1.138), was purified to homogeneity, and MtDH cDNA was clo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Eukaryotic cell

دوره 9 9  شماره 

صفحات  -

تاریخ انتشار 2010